
The Aesop Language

Dries Kimpe (Argonne National Laboratory)

June, 2012

NAS 2012, Xiamen, China

Aesop In Short

New programming language (+ support libraries)

Based on C language with added concurrency and other extensions

Designed for implementing distributed network services

Aims to maintain sequential flow while programming without requiring sequential
execution.

Aims to be highly productive.

Implemented as Source-To-Source translator

Translator written in Haskell, injects macro calls into the source.

Outputs plain C

Also provides RPC helper

Generates local and remote network and encoding/decoding functions

Stand-alone distribution

Git repository at git://git.mcs.anl.gov/aesop

Trac (wiki & bug reports) at http://trac.mcs.anl.gov/project/aesop

NAS 2012 - Xiamen, China

Aesop - Motivation

Easiest way to have sequential code in a network server is using threads.
However

Threads can have high overhead (thread stack, context switch, thread creation, locking)

Not all device APIs map to a thread model
(or hard to drive efficiently from multiple threads)

Poll/epoll/select

MPI_Waitsome/MPI_Waitany

Consequently, many high-concurrency network services are written in an event-
driven manner (memcached

Unfortunately, writing event-driven code is hard

Manual stack

Difficult to follow control flow (callback to callback) [debugging!]

inversion of control

Running multiple event loops (for multi-core processors)

NAS 2012 - Xiamen, China

Example: Echo Server (7/tcp)
(with some processing added in)

Open TCP connection to port 7, server writes back uppercase of data received

NAS 2012 - Xiamen, China

void handleClient (fd) {

 char buf[];

 read (fd, buf);

 uppercase (buf);

 write (fd, buf);

 close (fd);

}

int main (int argc, char ** args) {

 while (true) {

 int fd = accept (sock);

 handleClient (fd); // or thread

 }

}

Automatic
variables

Concurrency
granularity: thread

Linear
control flow

Event Version
enum { STATE_READ, STATE_WRITE, STATE_CLOSE };

void handleRequest (request * req) {

 switch (req->state) {

 case STATE_READ:

 read (req->fd, req->buf); state = STATE_WRITE; break;

 case STATE_WRITE;

 uppercase (req->buf);

 write (req->fd, req->buf); state = STATE_CLOSE; break;

 }

}

int main (int argc, char ** args) {

 while (true) {

 if (can_accept (socket)) {

 int fd = accept;

 req = malloc (sizeof (request));

 req->fd = fd; req->state = STATE_READ;

 active_requests_add (req);

 }

 req = wait_for_req_ready ();

 if (!handleRequest (req))

 { active_requests_remove(req); close(req->fd); free (req); }

 }

}

NAS 2012 - Xiamen, China

Manual state management

Inversion
of control

Si
n

gl
e

ev
en

t
lo

o
p

Concurreny: none (or event loop)

PVFS2 State Machine Compiler

Similar to flex/bison: takes blocks of C code and adds glue than can be automated.

Simple parser (C blocks are opaque)

 machine echo_request {

 state start_read {

 run request_read; // C function

 default => start_write; // next state

 }

 state start_write {

 run request_write;

 default => close;

 }

 state close {

 run request_cleanup;

 default => terminate;

 }

}

Note: accept code & actual read/write/cleanup code not shown

 Unified interface required (start, test)
 Restores some of the control flow

 Help with state management

NAS 2012 - Xiamen, China

Aesop
Automatic State Machines

NAS 2012 - Xiamen, China

Automatic variables

Linear control flow

Concurrency: none or event loop

Why invent our own programming language?

Existing Parallel Programming models

Focus on optimizing CPU usage

Do not offer assistance for handling devices such as network and storage devices.

Do not support cancellation

Problem partitioning mapped directly to threads

Portability might be an issue

Event driven programming libraries

Unify handling of asynchronous operations

Require algorithms to be casted into an event-driven form

Generally only support single-threaded event loops

NAS 2012 - Xiamen, China

Blocking vs Non-Blocking

Non-blocking code is cpu bound.

Blocking code is not cpu bound, meaning that the completion typically depends
on some external event.

Aesop does not enforce correct usage.

Blocking or non-blocking is a property of a C function (or function pointer)

indicated by the __blocking keyword

Visible when declaring function, not when calling function.

Examples:

Calculating a checksum is not blocking.

Sleeping for 6 seconds or waiting for an alarm time is blocking.

Reading or writing from network or disk is blocking.

Any function calling a blocking function is also blocking.

NAS 2012 - Xiamen, China

__blocking int aesop_main (int argc, char ** args

The pbranch keyword

Basic concurrency construct in aesop is the pbranch

Pbranch creates a C scope

Pbranches can be executed concurrently with other code

Within the pbranch, execution is sequential

NAS 2012 - Xiamen, China

Example 1:

pprivate int i;

for (i=0; i<100; ++i)

{

 pbranch {

 do_something (i);

 do_something_else ();

 }

}

Example 2:

{

 pbranch { call1 (); }

 pbranch { call2 (); }

}

Private pbranch variables

Pbranches share variables from the enclosing scope by default

Use the pprivate variable modifier to give each pbranch a private copy

Private copy is initialized when entering the pbranch.

NAS 2012 - Xiamen, China

pprivate tmp;

pbranch {

 // own copy of tmp

}

pbranch {

 // own copy of tmp

}

Code example

pbranch synchronization: pwait

The pwait keyword enables synchronizing with the

 enclosed pbranches.

NAS 2012 - Xiamen, China

pwait {

 pbranch {

 func_1 ();

 }

 pbranch {

 func_2 ();

 }

}

func3 ();

// func_1() might

// execute concurrently with

// func_2();

// func_2() will not

// wait for func1() to

// complete if it blocks.

// func_3() will not execute

// until func_1() and

// func_2() completed.

Note: pbranch without enclosing pwait is possible: lonely pbranch.

Example

Cancelling blocking functions

One of the major differences between aesop and other concurrency extensions
(such as OpenMP) is support for cancellation.

pbranches can be cancelled.

Cancellation is aesop.
(for example: MPI_Cancel for MPI_Recv, aio_cancel for aio_read

Example: cancelling operation after timeout (some error tracking omitted)

NAS 2012 - Xiamen, China

pwait {

 pbranch {

 do_some_processing (); // non-blocking function

 send_query (); // blocking function

 receive_response (); // blocking function

 aesop_cancel_branches ();

 }

 pbranch {

 aesop_timer (10);

 aesop_cancel_branches ();

 }

}

Resources

So far, functions were blocking because they called one or more blocking
functions.

A resource is a collection of one or more (public) blocking functions, with the
difference that those blocking functions do not call any other blocking functions.

Resource functions look and behave exactly like all other functions.

The innermost blocking function in a call-graph is always a resource function.

Resources can (and typically do) also contain regular (non-blocking) functions.

Resources also contain some special aesop-internal functions for testing, polling,
context handling and cancellation.

Resources are written in plain C

Example resources:

Timer (in default aesop distribution)

Signal

socket

NAS 2012 - Xiamen, China

Some Notes

Aesop does not require or create threads: it does not dictate concurrency model

Resources might use threads internally

Aesop is thread-safe (could use multiple threads to drive aesop)

Resources can choose the most efficient driving model (threads, poll) (for a given
system) without affecting the use of the resource.

There are no explicit state machines

Blocking functions are pulled apart into segments containing no blocking calls

Variables are moved from the stack to the heap (and references adjusted)

Non-blocking functions not modified

Easiest mental model for aesop code: lightweight cooperative threads
(with blocking function possible context switch point)

NAS 2012 - Xiamen, China

Status

Stand-alone source code distribution of
Aesop development environment for use in other
storage projects. Documentation on how to install and
how to use Aesop.

Aesop is ready for use

Triton (storage system) is written completely in aesop

Collection of resources available

Own repo / bug tracker [git://git.mcs.anl.gov/aesop]

Passed performance requirements (more in a moment)

Places where Aesop can be improved

Some minor language bugs

Workarounds generally possible

Compilation speed

Debugging

Using preprocessor directives to link to original source, but no debugger supports stepping
through the logical control flow.

NAS 2012 - Xiamen, China

Productivity

CC Mod. CC SLOC

Aesop 16 11 179

Thread per client 17 12 182

Thread per op 22 17 249

Threadpool 32 26 313

Event 28 23 341

NAS 2012 - Xiamen, China

CC: McCabe Cyclomatic Complexity (CC),
Mod. CC: Modified McCabe Cyclomatic Complexity (mod. CC)
SLOC: Source Lines of Code (SLOC).

Implemented simple server listening on a TCP socket and responding
to one or more client requests, optionally storing or retrieving data
from disk.

Note: no error handling, ignoring shared definitions, not using cancellation

Performance (Write)

NAS 2012 - Xiamen, China

Performance (Read)

NAS 2012 - Xiamen, China

Performance (Write-Null)

NAS 2012 - Xiamen, China

Performance (Read-Null)

NAS 2012 - Xiamen, China

Max Memory Usage (write)

NAS 2012 - Xiamen, China

Response Time (write, 1024 clients)

NAS 2012 - Xiamen, China

Aesop: Summary

Concurrency extension to the C programming language

Takes normal C code and detects blocking function calls

Current implementation creates (implicit) state machine code and writes the
boilerplate code; Isolates algorithm from concurrency model.

Lowers the bar for writing high-performance network servers
(for example, can convert sequential into event-driven)

Fully C compatible: important for reusing existing code and interfacing with low-
level OS layers

NAS 2012 - Xiamen, China

Concurrent & decoupled execution

Cancellation

RPC code generator

Conclusion

Many people are working on Aesop:

Phil Carns, Kevin Harms, Dries Kimpe, Sam Lang, Rob Ross, Justin Wozniak

Further Reading:

Code repository: http://git.mcs.anl.gov/aesop

Documentation, Installation instructions & Bug tracking:
http://trac.mcs.anl.gov/projects/aesop

Questions/Remarks?

NAS 2012 - Xiamen, China

http://git.mcs.anl.gov/aesop
http://trac.mcs.anl.gov/projects/aesop

